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A ‘jump’ model of single-particle motion in a liquid is first used to calculate the frequency spectrum g(w) 
of a liquid metal near freezing. In this treatment y(w) is characterized by shear (q) and bulk viscosities, 
plus a time ‘t breaking the coherence of normal mode oscillations within a ‘cell’ or subvolume. The 
connection with earlier treatments of the relation between self-diffusion coefficient D and q at the melting 
temperature T,,, of liquid metals is pointed out. 

The self motion, characterized by g(w), is considered then in relation to the dynamical structure factor 
S(q w )  of a liquid metal such as Rb. In particular, theories of the dispersion relation wq of the collective 
mode in liquid alkali metals and in their hot solids are re-examined, with -k,Tc(q) used as an effective q 
space form of a pseudo-pair potential, c being the direct correlation function. This leads to a new proposal 
for the dispersion relation wq,  which in turn is related to the static structure factor S(q). The close relation 
of the hot-solid results to the density functional treatment of phonons in K by Ferconi and Tosi is 
established. 

KEY WORDS: Jump model, frequency spectrum, direct correlation function 

1 INTRODUCTION 

Earlier work of Brown and March’ used the so-called Green-Kubo relations (see 
Eq. (1.4) below) to treat the self-diffusion coefficient D, and the viscosities, at the 
melting temperature T,,, of liquid metals. In this work, sum rules on the self function 
S,(q, o) and the van Hove dynamical structure factor S(g, w )  were employed, together 
with general arguments on the frequency range of S, and S and on the relation 
between them via the static structure factor S(q). 

The present work is in the same general area, but it takes account of progress in 
the theory of transport coefficients by Zwanzig2, the relation of whose work to the 
treatment of Ref. 1 was established by one of us (N.H.M.)3. Zwanzig’s approach to 
obtain the self-diffusion constant D is here generalized to obtain the frequency 
spectrum g(w), which is the Fourier transform of the velocity auto-correlation 
function (~(0). v ( t ) ) :  
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224 N. H. MARCH AND B. V. PARANJAPE 

Alternatively, g(w) is related to the self function S, referred to above by 

(1.2) 

The sum rule on SJk, o) for classical liquids yields for the ‘normalization’ of the 
frequency spectrum g(w): 

where m is the ionic mass, while D is given by 

the second step in Eq. (1.4) following immediately from Eq. (1.2). 
One other piece of information on g(w) follows from hydrodynamics and in 

particular from the long-time tail of the velocity auto-correlation function, namely 
a term of the form t - 3 ’ 2  at long time. This in turn yields for g ( o )  at small w the 
expansion 

where A is given by4 

- 312 k ,  T 
3P mrc 

A = ( 2 ~ ) ” ~  2- [4n(D + :)] -. 

This shows that both D and the shear viscosity q enter the form of g(w) at small w. 
Immediately below, in Section 2, we generalize Zwanzig’s work2 to obtain g(w). 
Though, as anticipated above, D and q enter in a basic way, the model used is not 
capable of yielding the long-time tail in ( ~ ( 0 ) .  u ( t ) ) ,  and hence the cusp at w = 0 
revealed in Eq. (1.5) is absent from our model result for g(w). 

2 

Zwanzig’ sets out four assumptions that define his picture of a liquid-state dynamical 
model. Following Stillinger and Webet’, the configuration space of the many-particle 
assembly is viewed as divided into cells, each one of which is associated with a local 
minimum on the potential energy surface of the assembly. The picture is then that 
the configuration of the liquid remains in one of these cells for some time, performing 
approximately harmonic oscillations about the local minimum, until suddenly a 

MODEL OF FREQUENCY SPECTRUM g(w) 
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COLLECTIVE MODES IN MOLTEN AND SOLID METALS 22 5 

saddlepoint or bottleneck on the potential surface is located, and a ‘jump’ occurs to 
another cell. 

Using this same picture, we now calculate g(o) from Eq. (1.1) in terms of the 
collective normal modes with dispersion relation 0,. Zwanzig’s result for D then 
generalizes to read: 

where exp( - t / ~ )  represents the waiting time distribution for cell jumps, with t being 
evidently a lifetime. Evaluating the time-integral in Eq. (2.1) and utilizing Zwanzig’s 
result for D: namely 

where there are a total of 3N normal mode frequencies, one obtains 

] (2.3) 
T T + 

1 + (o + oq)2z2 1 + (w - W , ) ~ T ~  

which evidently reduces to D/z  with D as in Eq. (2.2), in the limit o + 0. Replacing 
the sum over frequencies by an integral over q, with the usual density of states factor, 
and defining a Debye cut-off 40 in the usual way by 

where N / V  is the number density of the liquid, the q integration can be completed 
with the assumption of a Debye spectrum, following Zwanzig’s evaluation of the limit 
w -+ 0. Using the abbreviations 

one readily obtains, with Q = q/qo: 

(4aC 2 a Q + b  - b 2 ) 1 / 2  I’ 0 b2 - 2aC 2 
tan-’ 

2a2 (4aC - b y  

when 4aC > b2. Here X has been written for aQ2 + bQ + C. Zwanzig neglects the 
tan - term, and reaches then, taking both longitudinal and transverse frequencies, 
the result 
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226 N. H. MARCH AND B. V. PARANJAPE 

where cI and c, represent longitudinal and transverse sound velocities. Then pc? T and 
pc:t are interpreted simply as longitudinal and shear viscosities q1 and q respectively. 

One has presumably not automatically satisfied the sum rule (1.3): this could then 
be used to relate the lifetime T to other properties of the liquid, though admittedly 
by a complicated implicit equation. While Eq. (2.6) represents the generalization we 
were seeking of the Zwanzig result (2.7),  we note next that as o becomes sufficiently 
large, Eq. (2.3) yields a slow decay of g ( o ) m - ’ .  This slow rate of decay seems to be 
a limitation inherent in this model, and may well need to be removed by multi- 
plication by either as factor such as exp ( -  rw)  or exp ( -  Po’): with again a relation 
between T and exponent c( or p following from the sum rule (1.3). As noted in Ref. 3, 
the Zwanzig formula (2 .7)  reduces, as a special case, to the relation between D and 
q given by Brown and March at the melting temperature of liquid metals. 

Having discussed the frequency spectrum g(w) associated with the self-function 
SJq, o) in the jump model summarized above, we turn next to a more detailed study 
of the dispersion relation wq for collective modes in liquid metals near the melting 
point and in the corresponding hot solids. Then we shall consider the relation of 
S,(q, w), S(q, o) and o, to the static structure S(q). 

3 
SOLID METALS 

DISPERSION RELATION 0, FOR LIQUID METALS AT T,,, AND IN HOT 

Let us start from the apparently drastic assumption that the dynamics of liquid metals 
at T,,,, and the corresponding hot solid metals near freezing, are governed by an 
effective pair interaction, which has a Fourier transform, say &q). We will refer briefly 
below to the relation of &q) to the true pair potential in a liquid metal like Na. 

Bardasis, Falk and Simkin6 have then discussed the collective modes of both 
crystals and fluids in terms of &q) introduced above. As the simplest example, the 
dilute fluid case then corresponds to a dispersion relation 

Setting &q) = 0 will, of course, yield the usual free-particle dispersion relation. The 
same type of argument can be applied to liquids by the methods of Feynman and 
Cohen’. This leads naturally then to the question of how &q) is to be chosen in a 
dense liquid. Various workersa-’’ have stressed in liquid-state theory the intimate 
connection between the direct correlation function c(r) and the pair potential in units 
of k,T. While pair potentials in dense liquids have relatively hard cores, -k,Tc(r) 
has Fourier transform -kBTc(q) which exists for all q, since 
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COLLECTIVE MODES IN MOLTEN AND SOLID METALS 221 

Since, at small q, in metals like Na and K, S(q) - 0.02, c(q) - - l/S(q). Then, 
neglecting the free-particle term in Eq. (3.1), and making the identification, at melting 
temperature T, to be definite: 

- &4) + (k, TC(4))Trn7 (3.3) 

one regains the Feynman-like result 

(3.4) 

or the dispersion relation in the liquid metal in terms of the static structure factor. 
Eq. (3.4) has, in fact, been brought into direct contact with the measured dispersion 
relation wq for liquid Rb at T, using the neutron studies of Copley and Rowel ’, by 
Matthai and March12. The main features of the experiments are faithfully reflected 
by Eq. (3.4). However, it is not fully quantitative, and we shall return to this point 
below. 

3. I 

Having given evidence in favour of the choice of &q) in Eq. (3.3) in simple liquid 
metals at the melting temperature T,, let us turn briefly to consider the dispersion 
of longitudinal phonons in simple s-p metals, like the alkalis Na, K and Rb, within 
the same theoretical framework. The result corresponding to Eq. (3.1) is then readily 
derived as6, : 

Longitudinal phonon dispersion relations in crystals 

where the K’s denote reciprocal lattice vectors. 
While Eq. (3.5) is strictly a low temperature result, and the correspondence (3.3) is 

not therefore immediately appropriate, the recent work of Ferconi and TosiI4, by a 
substantially different route, using the free energy difference between a perfect crystal 
and a deformed crystal containing a ‘phonon’, is highly relevant here. Their result is 
equivalent to Eq. (3.5) when (i) a Debye-Waller factor is incorporated and (iif &q) is 
replaced as in Eq. (3.3). Support for both (i) and (ii) is afforded by the good agreement 
they then obtain with the measured dispersion relations for hot solid K. 

3.2 Dispersion relation for  liquid metals at T, based on fourth moment of S(q, o) 

Having established the usefulness of the transformation (3.3) in liquid metals and in 
hot solids near the melting temperature T,, we return to the discussion of Eq. (3.4) in 
relation to experiments in the liquid alkali metal Rb at T,. As mentioned above, 
Eq. (3.4) is not fully quantitative. Since it rests on the assumption that the collective 
mode oq exhausts the second moment of S(q, a), it is tempting to suppose that aq 
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228 N. H. MARCH AND B. V. PARANJAPE 

based on satisfying the fourth moment theorem would be more quantitative. Such a 
theory of wq is afforded by the work of Hubbard and Beeby". Their result, again 
based on the assumption of pair potential $(r), is given by 

g(r)C1 - cos qzldr. m 

In earlier work, we evaluated Eq. (3.6) for model results for g(r) and &Y) for dense 
liquid Ar and for liquid Na near T,. We noted there"j that one of the major problems 
of such a procedure resided in the poor velocity of sound predicted by such an 
approach for dense liquids. Our proposal here is to utilize Eq. (3.6) for liquid Na 
and K near T, using the experimental structure factor S, as measured by Greenfield, 
Wellendorf and WiserI7, but with 4 replaced according to Eq. (3.3). 

4 S(q, o) AND STATIC STRUCTURE S(q) RELATED TO wq AND 
SELF MOTION 

We consider here two aspects of the dynamical structure factor. First, in the light of 
the discussion of the Hubbard-Beeby form of o,, let us define in an analogous manner 
to Eq. (1.2) the frequency spectrum associated with S(q, w) as 

Then, as noted by Gyorffy and March'*, a modification of the Hubbard-Beeby theory 
yields a relation between $0) and g(o) given by 

the original Hubbard-Beeby theory omitting the (large) factor l/S(O) in a dense liquid 
metal. Using the jump model of g ( o )  in Section 2, the form of s(o) according to 
Eq. (4.2) is then determined. 

4.1 

The second aspect of the dynamical structure factor S(q, w )  to be considered is its 
zeroth moment, which is simply the static structure factor S(q). Specifically, we 
examine the way one can use the structure of Eq. (3.6) to refine the approximations 
of Hubbard and Beeby in relation to static structure. As emphasized by March, 
Pathak and Ascough", the shape of that theory is represented by 

Static structure factor S(q) related to oq 

(4.3) 
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COLLECTIVE MODES IN MOLTEN AND SOLID METALS 229 

The result (3.4) is recovered by taking the limit Q -+ co. In the Hubbard-Beeby theory, 
Q(q, 0) is related to self-motion, but their approach, as they emphasized in the original 
paper, is poor for static structure, having been specifically designed to reproduce the 
second and fourth moments of S(q, a). 

In Ref. 19, using experimental values for S(q) and of for liquid Rb at T,, 
[q2QJq, 0)I-I was extracted. It was found to rise from a finite long-wavelength limit 
to a maximum and subsequently to decrease monotonically. We merely note here 
that a model for the shape of Q(q, 0) is given by Eq. (4.3), taking S, from experiment 
for liquid Na and liquid K and using wq as in Eq. (3.6). 

5 DISCUSSION AND SUMMARY 

Evidence has been presented that simple theories of collective modes in liquid metals 
at the melting temperature T,, based on the assumption of a pair potential with a 
Fourier transform &q), are very useful to gain physical insight provided that &q) is 
identified with -(k,Tc(q)),m as in Eq. (3.3). The same conclusion is shown to follow 
from the recent work of Ferconi and Tosi14 on hot solid K near T,, provided the 
Debye-Waller factor is correctly incorporated into Eq. (3.5). 

Additional points investigated concern a model of the frequency spectrum g(o)  
which correctly embodies the relation between self-diffusion coefficient D and shear 
viscosity q given by the work of Brown and March’ and a treatment of static structure 
having the shape of Eq. (4.3). However, a quantitative theory relating the function 
Q(q, 0) to the self motion remains a problem for further work. 

A final point to be made concerns the relation of the work to the ‘real’ pair 
potential $~(r) extracted from the measured structure factor S ( k t t h e  so-called 
‘inverse problem’-as posed originally by Johnson and March2’. The procedure 
has recently been brought to full fruition by the studies of Reatto and co-workers2’ 
on liquid Na at T, using the measured S(q) from Ref. 17. We expect that if this 
potential is used in Newton’s equations in a full molecular dynamics study, the correct 
collective mode dispersion relation will be faithfully reproduced. However, the 
message of the present work is that simpler theories are also useful at  T, for liquid 
metals and their corresponding hot solids, provided the ‘pseudo pair potential’, 
-(kBTc(q))T, in Fourier transform is employed rather than $(r). It is to be hoped in 
the future, that such simplifications will result in a fully quantitative, and largely 
analytical theory of S(q, o), and in particular its relation to the self function S,(q, o) 
and the static structure S(q). As to a theory of S(q, w)  in a crystal, it can be constructed 
from knowledge of the 0,’s as in Eq. ( 3 3 ,  plus the polarization vectors22. 
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